Generative AI with Diffusion Models (GAIDM)

 

Course Overview

Thanks to improvements in computing power and scientific theory, generative AI is more accessible than ever before. Generative AI plays a significant role across industries due to its numerous applications, such as creative content generation, data augmentation, simulation and planning, anomaly detection, drug discovery, personalized recommendations, and more. In this course, learners will take a deeper dive into denoising diffusion models, which are a popular choice for text-to-image pipelines.

Please note that once a booking has been confirmed, it is non-refundable. This means that after you have confirmed your seat for an event, it cannot be cancelled and no refund will be issued, regardless of attendance.

Certifications

This course is part of the following Certifications:

Prerequisites

  • A basic understanding of Deep Learning Concepts.
  • Familiarity with a Deep Learning framework such as TensorFlow, PyTorch, or Keras. This course uses PyTorch.

Course Objectives

  • Build a U-Net to generate images from pure noise
  • Improve the quality of generated images with the denoising diffusion process
  • Control the image output with context embeddings
  • Generate images from English text prompts using the Contrastive Language—Image Pretraining (CLIP) neural network

Outline: Generative AI with Diffusion Models (GAIDM)

From U-Net to Diffusion

  • Build a U-Net architecture.
  • Train a model to remove noise from an image.

Diffusion Models

  • Define the forward diffusion function.
  • Update the U-Net architecture to accommodate a timestep.
  • Define a reverse diffusion function.

Optimizations

  • Implement Group Normalization.
  • Implement GELU.
  • Implement Rearrange Pooling.
  • Implement Sinusoidal Position Embeddings.

Classifier-Free Diffusion Guidance

  • Add categorical embeddings to a U-Net.
  • Train a model with a Bernoulli mask.

CLIP

  • Learn how to use CLIP Encodings.
  • Use CLIP to create a text-to-image neural network.

Prices & Delivery methods

Online Training

Duration
1 day

Price
  • Online Training: CAD 660
  • Online Training: US $ 500
Classroom Training

Duration
1 day

Price
  • Canada: CAD 660

Schedule

Currently there are no training dates scheduled for this course.